報(bào)告題目:稀疏多模態(tài)數(shù)據(jù)融合優(yōu)化
時(shí)間:2024年10月19日上午10:30-12:00
地點(diǎn):主樓317
報(bào)告人:姜昊
報(bào)告人簡(jiǎn)介:姜昊,中國(guó)人民大學(xué)數(shù)學(xué)學(xué)院教授、 博士生導(dǎo)師,擔(dān)任中國(guó)運(yùn)籌學(xué)會(huì)女性工作委員會(huì)副秘書長(zhǎng)、中國(guó)生物信息學(xué)(籌)生物信息學(xué)算法研究專業(yè)委員會(huì)秘書長(zhǎng)、中國(guó)工業(yè)與應(yīng)用數(shù)學(xué)會(huì)數(shù)學(xué)與生命科學(xué)專業(yè)委員會(huì)委員,主要從事機(jī)器學(xué)習(xí)、 數(shù)據(jù)挖掘、計(jì)算生物信息學(xué)、基于學(xué)習(xí)的建模、優(yōu)化和控制等方面的研究工作,主持、完成國(guó)家自然基金項(xiàng)目 3項(xiàng),并以核心成員身份參與國(guó)家自然科學(xué)基金重大研究計(jì)劃集成項(xiàng)目。在 Pattern Recognition, IEEE Transactions on Neural Networks and learning Systems,Bioinformatics, Briefings in Bioinformatics, Information Sciences, Applied Mathematical Modeling, Applied Soft Computing 等國(guó)際權(quán)威期刊和會(huì)議發(fā)表論文 50 余篇。
報(bào)告內(nèi)容簡(jiǎn)介:Single-cell transcriptomics has transformed our ability to characterize cell states. New methods for simultaneous profiling of multi-omics single cell data enable a better understanding of the cellular states and functions. Cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq), allowed for parallel quantification of cell-surface protein expression and transcriptome profiling in the same cells; Methylome and transcriptome sequencing from single-cells (scM&T-Seq) allows for analysis of transcriptomic and epigenomic profiling in the same individual cells. However, effective integration method for mining the heterogeneity of cells over the noisy, sparse and complex multi-modal data is in growing need. In this talk, we will address the problem of heterogeneity analysis and representation learning in single cell data, for analyzing the optimal embedding representation and identifying cell clusters in a robust manner.
(承辦:管理科學(xué)與物流系、科研與學(xué)術(shù)交流中心)