精品人妻一区二区色欲产成人_国产成人精品92深夜福利_亚洲精品无码老妇成人AV_蜜桃夜色精品国产噜噜亚洲AV_亚洲精品有码中文av

ENGLISH
您所在的位置: 首頁» 新聞中心» 講座預(yù)告

【明理講堂2022年第39期】10-7悉尼科技大學(xué) Dr Yi Zhang:Intelligent Bibliometrics: Models and Applications

時間:10月7日(星期五)下午13:00-15:00 (GMT+08:00)

地點:騰訊會議:717-103-095

報告人:悉尼科技大學(xué) Dr Yi Zhang

主講人簡介:

張嶷博士現(xiàn)為悉尼科技大學(xué)澳大利亞人工智能研究院高級講師(終身教職),是2019年澳大利亞研究理事會DECRA(Discovery Early Career Researcher Award)基金獲得者。他擁有管理科學(xué)與工程(偉德國際1946bv官網(wǎng))與軟件工程(悉尼科技大學(xué))雙博士學(xué)位。他是美國佐治亞理工大學(xué)公共政策學(xué)院訪問學(xué)者(2011-2012)。

張嶷博士專注于文獻計量學(xué)與技術(shù)創(chuàng)新管理領(lǐng)域的研究,強調(diào)面向科技創(chuàng)新管理問題的智能文獻智能學(xué)理論架構(gòu)與方法創(chuàng)新。共發(fā)表學(xué)術(shù)論文100余篇(其中,2017-2022年間高被引論文4篇)。其Google Scholar 論文被引2100余次,H Index為21。

張嶷博士現(xiàn)擔(dān)任雜志Technological Forecasting and Social Change與Scientometrics副主編,IEEE Transactions on Engineering Management雜志編委,以及Elsevier國際科學(xué)評價中心全球委員會顧問委員。

報告內(nèi)容簡介:

Intelligent bibliometrics, highlighting the development and application of computational models incorporating AI and data science techniques with bibliographical information for broad studies in science, technology, and innovation scenarios. Its main tasks include topic extraction, relationship measurement and discovery, and prediction. Some representative works include embedding-based models for topic extraction and classification, heterogeneous network analytics for relationship discovery and prediction, etc. We have successfully applied intelligent bibliometrics to a wide range of ST&I scenarios, e.g., profiling large-scale coronavirus literature, discovering gene-disease associations, detecting emerging technologies, recommending knowledge trajectories of scientific researchers.

In this seminar, I will describe how my efforts take actions on recombining AI and data science with practical scenarios, problems, and issues, particularly in the case of bibliometrics and ST&I studies. I will showcase intelligent bibliometrics modelling through two cases: (1) Bi-layer bibliometric network analytics for characterising emerging general-purpose technologies; and (1) streaming data analytics-based analysis for monitoring topic disruption, evolution, and resilience in early COVID-19 crisis.

(承辦:知識管理與數(shù)據(jù)分析實驗室、科研與學(xué)術(shù)交流中心)

TOP